Harmonically induced representations of solvable Lie groups
نویسندگان
چکیده
منابع مشابه
Quantization and Representations of Solvable Lie Groups
Introduction. In this note, we will announce a characterization of a connected, simply connected Type I solvable Lie group, G, and present a complete description of the set of all unitary equivalence classes of irreducible unitary representations of G together with a construction of an irreducible representation in each equivalence class. This result subsumes the results previously obtained on ...
متن کاملIrreducible Representations of Solvable Lie Superalgebras
The description of irreducible finite dimensional representations of finite dimensional solvable Lie superalgebras over complex numbers given by V. Kac is refined. In reality these representations are not just induced from a polarization but are twisted ones, as infinite dimensional representations of solvable Lie algebras. Various cases of irreducibility (general and of type Q) are classified.
متن کاملSuperrigid Subgroups of Solvable Lie Groups
Let Γ be a discrete subgroup of a simply connected, solvable Lie group G, such that AdG Γ has the same Zariski closure as AdG. If α : Γ → GLn(R) is any finite-dimensional representation of Γ, we show that α virtually extends to a continuous representation σ of G. Furthermore, the image of σ is contained in the Zariski closure of the image of α. When Γ is not discrete, the same conclusions are t...
متن کاملHyper–Kähler Quotients of Solvable Lie Groups
In this paper we apply the hyper-Kähler quotient construction to Lie groups with a left invariant hyper-Kähler structure under the action of a closed abelian subgroup by left multiplication. This is motivated by the fact that some known hyper-Kähler metrics can be recovered in this way by considering different Lie group structures on Hp× H (H: the quaternions). We obtain new complete hyper-Kähl...
متن کاملGood Representations and Solvable Groups
The purpose of this paper is to provide a characterization of solvable linear algebraic groups in terms of a geometric property of representations. Representations with a related property played an important role in the proof of the equivariant Riemann-Roch theorem [EG2]. In that paper, we constructed representations with that property (which we call freely good) for the group of upper triangul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1985
ISSN: 0022-1236
DOI: 10.1016/0022-1236(85)90017-5